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VE-cadherin is an endothelial-specific transmembrane

protein concentrated at cell-to-cell adherens junctions.

Besides promoting cell adhesion and controlling vascular

permeability, VE-cadherin transfers intracellular signals

that contribute to vascular stabilization. However, the mo-

lecular mechanism by which VE-cadherin regulates vascu-

lar homoeostasis is still poorly understood. Here, we report

that VE-cadherin expression and junctional clustering are

required for optimal transforming growth factor-b (TGF-b)

signalling in endothelial cells (ECs). TGF-b antiproliferative

and antimigratory responses are increased in the presence

of VE-cadherin. ECs lacking VE-cadherin are less res-

ponsive to TGF-b/ALK1- and TGF-b/ALK5-induced Smad

phosphorylation and target gene transcription. VE-cadherin

coimmunoprecipitates with all the components of the

TGF-b receptor complex, TbRII, ALK1, ALK5 and endoglin.

Clustered VE-cadherin recruits TbRII and may promote

TGF-b signalling by enhancing TbRII/TbRI assembly into

an active receptor complex. Taken together, our data in-

dicate that VE-cadherin is a positive and EC-specific regu-

lator of TGF-b signalling. This suggests that reduction or

inactivation of VE-cadherin may contribute to progression

of diseases where TGF-b signalling is impaired.
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Introduction

Transforming growth factor-b (TGF-b) is a multifunctional

dimeric polypeptide growth factor that regulates prolifera-

tion, differentiation, migration, extracellular matrix produc-

tion and survival of various cell types. TGF-b mediates its

cellular effects through ligand-induced heteromeric receptor

complexes of type II and type I transmembrane serine-

threonine kinases. Activated type I receptors phosphorylate

cytoplasmic receptor-associated Smad proteins (R-Smads).

Phosphorylated R-Smads dissociate from the receptor and

form a complex with the common mediator Smad4. This

complex accumulates in the nucleus where it regulates tran-

scription by interacting with many specific DNA-binding pro-

teins (Attisano and Wrana, 2002; Derynck and Zhang, 2003).

In endothelial cells (ECs), the TGF-b type II receptor

(TbRII) and two distinct TGF-b type I receptors (TbRIs),

the EC-restricted ALK1 and the broadly expressed ALK5,

are expressed (Oh et al, 2000; Goumans et al, 2002). ALK1

activation induces the phosphorylation of Smad1/5/8,

whereas ALK5 promotes Smad2/3 phosphorylation. In addi-

tion, TGF-b also binds the co-receptor endoglin, a modulator

of ALK1 and ALK5 signalling, highly expressed on rapidly

proliferating ECs. In some experimental conditions, endoglin

increases ALK1 signalling and promotes EC proliferation and

angiogenesis (Goumans et al, 2002; Lebrin et al, 2004). In

other experimental settings, lack of endoglin increases re-

sponse to ALK1 and subsequently growth (Pece-Barbara et al,

2005). These conflicting results suggest that the cellular

context may strongly influence the downstream effect of

TGF-b activation in ECs.

Hereditary haemorrhagic telangiectasia (HHT) is an auto-

somal dominant vascular dysplasia characterized by epis-

taxis, telangiectases, pulmonary and cerebral vascular

malformations and later in life by gastrointestinal bleeding.

Two main genes are mutated in this disease, ENG in HHT1

and ALK1 in HHT2 that account for about 80% of cases

(Lesca et al, 2006; Prigoda et al, 2006), indicating that yet

unidentified genes are also responsible for this disease.

Mice lacking either endoglin or ALK1 die in utero at

embryonic day 10.0–10.5 of major defects in vascular and

heart development (Bourdeau et al, 1999; Li et al, 1999;

Arthur et al, 2000; Oh et al, 2000; Urness et al, 2000). The

phenotype is characterized by haemorrhages in the yolk sac

and embryo proper due to lack of maturation of the primitive

vascular plexus with abnormal dilation of the lumen and

vascular rupture. In the heart, the ECs of the endocardium fail

to undergo mesenchymal transition required for their migra-

tion into the atrio-ventricular cushion. This defect strongly

affects heart development and function (Bourdeau et al,

1999; Arthur et al, 2000; Sorensen et al, 2003).

The vascular phenotype of endoglin- and ALK1-deficient

embryos presents striking similarities with that of embryos

lacking proteins of endothelial cell-to-cell adherens junctions.

These structures are formed by an endothelial-specific

member of the cadherin family (VE-cadherin), which promotes
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homotypic cell–cell adhesion and which, through its cytoplas-

mic domain, links intracellular partners such as b-catenin, p120

and plakoglobin (Dejana, 2004; Gumbiner, 2005). Adherens

junctions are required for EC stabilization and homoeostasis as

they promote contact inhibition of growth and reduce cell

sensitivity to apoptotic stimuli. Embryos lacking VE-cadherin

die in utero by embryonic day 10.5 from alterations in the

vascular development of the yolk sac and embryo. Vessels

cannot undergo remodelling, are fragile and haemorrhagic,

tend to grow in an irregular way and eventually regress

(Carmeliet et al, 1999). Consistently, EC-specific inactivation

of the b-catenin gene leads to embryonic death due to abnor-

mal development of the vascular system with lacunae, enlarged

and irregular lumen and multiple haemorrhages (Cattelino

et al, 2003). Most strikingly, b-catenin-null endocardial cells

fail to invade the atrio-ventricular cushion (Liebner et al, 2004)

leading to a defect comparable to that described in endoglin/

ALK1 knockout embryos. In adult mice, transplantation of

VE-cadherin-null ECs leads to pathological features, such as

the formation of large haemangiomas, abnormal EC growth

and frequent bleeding (Zanetta et al, 2005).

The mechanism of action of VE-cadherin/b-catenin signal-

ling is complex and several pathways may be affected by its

inhibition (Dejana, 2004; Liebner et al, 2006). We found that

VE-cadherin may associate with VEGFR-2 and reduce its

proliferative signal, thus limiting EC growth and controlling

vascular remodelling. This activity requires VE-cadherin

clustering at junctions and association with DEP-1/CD148

phosphatase, responsible for VEGFR-2 receptor dephosphor-

ylation (Lampugnani et al, 2003). However, the mechanism

by which VE-cadherin signalling controls vascular stabiliza-

tion is still poorly investigated. Previously, we demonstrated

that b-catenin-null ECs/endocardial cells fail to respond to

TGF-b and to undergo mesenchymal transition, suggesting

the existence of a strict interplay between the VE-cadherin/

b-catenin complex and TGF-b signalling (Liebner et al, 2004).

In the present study, we investigated the role of VE-cadherin

expression and clustering in TGF-b-induced biological

responses. Our data demonstrate for the first time that

VE-cadherin is a key positive regulator of TGF-b/ALK/Smad

signalling in ECs.

VE-cadherin knockdown inhibited TGF-b-induced Smad1/

5 and Smad2/3 phosphorylation, reduced expression of Smad

target genes and counteracted the inhibitory effect of TGF-b
on EC proliferation and migration. TGF-b stimulation induced

TbRII association with VE-cadherin at cell-to-cell contacts

where VE-cadherin clustering may promote TbRII/TbRI

assembly and activation. Overall our data indicate that

VE-cadherin participates in maximal activation of the TGF-b
pathway, acting as a positive and EC-specific regulator of

TGF-b response. This indicates that the response of ECs to

growth factors is context dependent and that increased

TGF-b signalling may contribute to VE-cadherin-dependent

stabilization and remodelling of the vascular endothelium.

Results

VE-cadherin increases TGF-b/Smad-dependent

transcription

To examine whether VE-cadherin has a regulatory role in

TGF-b signalling in ECs, we used mouse embryonic stem

cell-derived ECs, with homozygous null mutation of the

VE-cadherin gene (VEC null) and reconstituted by retroviral

transfer to express wild-type levels of VE-cadherin (VEC posi-

tive), as described previously (Balconi et al, 2000; Lampugnani

et al, 2002, 2003; Iurlaro et al, 2004). We analysed these cells in

a transcriptional response assay using a TGF-b-inducible repor-

ter. The ALK5-dependent transcriptional reporter (CAGA)12-luc

(Dennler et al, 1998) was activated by TGF-b in VEC-positive

cells; however, the stimulatory effect on the reporter was greatly

reduced in the VEC-null cells (Figure 1A). To validate these

findings in different cells, we repeated the reporter assays in

mouse embryo-derived ECs (MEECs) from VE-cadherin knock-

out and wild-type embryos and in TGF-b responsive CHO cells

transfected with VE-cadherin or control vector (Breviario et al,

1995). The presence of VE-cadherin led to higher TGF-b
response in all three cell types (Figure 1A).

We next tested the effect of TGF-b on the expression of

plasminogen activator inhibitor-1 (PAI-1), downstream of the

ALK5 receptor and on the inhibitor of differentiation-1 (Id1),

an ALK1-specific target gene (Goumans et al, 2002). Both

genes were robustly upregulated in the VEC-positive cells

compared with the null cells (Figure 1B).

These experiments indicate that VE-cadherin expression

is a positive regulator of TGF-b-induced transcriptional

responses in ECs.

VE-cadherin is essential for TGF-b-induced inhibition

of EC cell growth and migration

To examine the effect of VE-cadherin on TGF-b-induced EC

growth inhibition, we counted the number of viable cells

present after 5 days of TGF-b treatment (5 ng/ml) by direct

counting (Figure 2A). Consistent with previous results,

VEC-null cells proliferate faster than VEC-positive cells and

achieve higher cell densities (Lampugnani et al, 2003).

However, TGF-b inhibitory effect on cell proliferation was

consistently greater in VEC positive (50%) than in null cells

(21%). We next measured the contribution of VE-cadherin to

the TGF-b inhibition of migratory behaviour of human umbi-

lical vein ECs (HUVECs), as TGF-b is known to tightly control

EC migration during angiogenesis (Muller et al, 1987; Basson

et al, 1992). VE-cadherin expression was ablated by siRNA

(Supplementary Figure 1S) and migratory behaviour was

assessed by wound assay and time-lapse microscopy

(Figure 2B). Short time intervals (3–12 h) were selected,

where the role of VE-cadherin in migration is not apparent.

siRNA-mediated knockdown of VE-cadherin blocked the in-

hibitory effect of TGF-b on HUVEC migration. HUVEC trans-

fected with siRNA for VE-cadherin, either untreated or TGF-b-

treated, displayed a constant migration speed of 12 mm/h.

Control siRNA-transfected cells also displayed a migration

speed of 12 mm/h, but reduced by TGF-b to 8mm/h.

We validated this observation in a different EC model

system. VEC-null and -positive cells were subjected to a

wound assay and migrated cells were visualized by crystal

violet and analysed by contrast phase microscopy

(Figure 2C). VEC-null cells exhibited a basally higher migra-

tory behaviour than VEC-positive cells, in accordance with

VE-cadherin ability to prevent cell detachment from a con-

fluent monolayer (Navarro et al, 1995). More importantly,

VEC-null cell motility was not inhibited by TGF-b, whereas

that of VEC-positive cells was, indicating that VE-cadherin

positively regulates TGF-b-mediated inhibition of EC

migration. The difference in cell migration was found at
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time intervals (12 and 24 h) where TGF-b has no antiproli-

ferative activities on VEC cells (not shown), suggesting that

VE-cadherin specifically regulates TGF-b effect on EC moti-

lity. Taken together, our results suggest that VE-cadherin

expression is critical for TGF-b inhibitory activity of EC

proliferation and migration.

VE-cadherin is necessary for efficient ALK1- and ALK5-

dependent Smad phosphorylation in TGF-b-treated ECs

TGF-b elicits biological responses in ECs through two distinct

type I receptors, ALK1 and ALK5, which induce the phos-

phorylation of Smad1/5/8 and Smad2/3, respectively, and

their nuclear translocation (Goumans et al, 2002, 2003). To

assess at which level of the signalling cascade VE-cadherin

impacts TGF-b pathway, we analysed whether VE-cadherin-

positive effect on TGF-b-induced response correlated with

increased phosphorylation of TGF-b-dependent Smads. In

time-dependent experiments, Smad1/5 phosphorylation was

more transient than that of Smad2/3 (Figure 3). In VEC-

positive cells peak levels for Smad1/5 and Smad2/3 phos-

phorylation were reached after 45 min of stimulation with

TGF-b1 and were higher (2–2.5-fold) than in null cells,

whereas total Smad levels were substantially unchanged

(Figure 3). Shortly after TGF-b stimulation the onset and

intensity of both Smad1/5 and Smad2/3 phosphorylation

was increased, whereas at later time points only the duration

of Smad2/3 phosphorylation was prolonged by VE-cadherin

expression (Figure 3). In dose-dependent experiments, VEC-

null cells showed 3- to 4-fold decrease in magnitude of both

Smad1/5 and Smad2/3 phosphorylation, at equivalent TGF-b
concentrations, indicating a significantly lower sensitivity of

these cells to TGF-b (Figure 4). The enhanced TGF-b response

of cells expressing VE-cadherin was not due to increased

TbRII, ALK5 and ALK1 expression as shown by the analysis

of TGF-b receptor levels (Supplementary Figure 2S).

To substantiate these findings in a different EC system, we

repeated the analysis of Smad phosphorylation in HUVEC

transfected with VE-cadherin or negative control siRNA.

Silencing VE-cadherin expression resulted in a significant

decline in TGF-b ability to induce ALK1- and ALK5-dependent

Smad phosphorylation in the presence of unchanged Smad

total levels (Supplementary Figure 3S). This effect was less

marked than in VEC-null cells likely due to incomplete

VE-cadherin knockdown (B80%) achieved by siRNA inter-

ference in these cells.

Taken together, these results indicate that VE-cadherin

increases TGF-b/ALK1- and TGF-b/ALK5-mediated responses

in ECs by acting upstream of Smad phosphorylation.

VE-cadherin forms a complex with TbRs

In ECs, signalling by TGF-b is initiated by binding to TbRII

followed by recruitment of TbRI complexes and subsequent
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Smad phosphorylation (Goumans et al, 2003). As VE-cadher-

in increases TGF-b signalling upstream of Smad phosphor-

ylation, we hypothesized that it might do so through physical

association with the TGF-b receptor complex.

To test this hypothesis, we immunoprecipitated TbRs from

COS-1 cells co-transfected with VE-cadherin and either TbRII,

ALK5 or ALK1. In the immunoprecipitates, we not only

recovered the components of the TGF-b receptor complex

but also VE-cadherin, indicating that VE-cadherin interacts

with TbRII, ALK5 and ALK1 in the absence of exogenously

added ligand (Figure 5A).

We confirmed previous results (Barbara et al, 1999;

Abdalla et al, 2000; Pece-Barbara et al, 2005) that endoglin

is present in the TGF-b receptor complex and interacts with

TbRII, ALK5 and ALK1 (Figure 5A). We assessed whether

endoglin might associate with VE-cadherin and modulate its

binding to TbRs. We report here that endoglin binds VE-

cadherin efficiently (Supplementary Figure 4S, panel A) but is

not required for the VE-cadherin/TbRs complex to form,

although it is most likely present in the complex in vivo

(Supplementary Figure 4S, panel B). To ascertain that the

analysed VE-cadherin/TbR complexes from transfected COS-

1 cells occurred at the cell surface and not in internal

compartments, both in vivo-formed immune complexes ana-

lysis and surface biotinylation and coimmunoprecipitation

analysis were used. Using both approaches, VE-cadherin was

recovered from TbRII- and TbRI-containing immunoprecipi-

tates, indicating that the association between VE-cadherin

and ectopically expressed TbRs occurs between cell surface

exposed molecules in transfected COS-1 cells (Supplementary

Figure 5S).

Next, we examined endogenous TbRII using surface

biotinylation of VEC-positive cells followed by

immunoprecipitation with anti-TbRII and detection using

streptavidin. We found that a surface protein comigrating

with VE-cadherin was coimmunoprecipitated by TbRII

(Figure 5B). To confirm the association of endogenous

TbRII and VE-cadherin and assess whether their binding

was TGF-b dependent, we carried out immunoprecipitation

and immunoblotting of TGF-b-treated VEC-positive cells. We

found that endogenous TbRII interacts with VE-cadherin and

that this interaction slowly increases between 15 and 45 min

of ligand stimulation (Figure 5C) and is still sustained at

2 h (data not shown). Finally, we immunoprecipitated

endogenous ALK5 and found that VE-cadherin is an

interacting partner also of this receptor in TGF-b-stimulated

cells (Figure 5D).

Disruption of VE-cadherin clustering inhibits

TGF-b-dependent Smad phosphorylation

Proper clustering of VE-cadherin at interendothelial junctions

is required for optimal inhibition of VEGFR-2 phosphoryla-

tion and mitogenic signalling (Lampugnani et al, 2003). To

test whether VE-cadherin clustering was essential to exert its

positive effect on TGF-b signalling, we first assessed whether

transiently expressed TbRII codistributed with VE-cadherin at

junctions in cultured VEC-positive cells by indirect immuno-

fluorescence and confocal microscopy (Figure 6A). VE-cad-

herin staining was mostly localized at discrete spots of

adjacent plasma membranes, as expected for a junctional

protein. TbRII displayed a vesicular and cell surface localiza-

tion. Consistent with a possible localization at intercellular

adherens junctions, TbRII showed colocalization with

VE-cadherin at cell-to-cell contacts (Figure 6A). The quanti-

fication of the average number of colocalization events at the

plasma membrane showed weak codistribution in the un-

treated state followed by a two-fold increase upon stimulation

with 2 ng/ml TGF-b for 90 min (Figure 6B). We examined
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the cell surface distribution of endogenous TbRII/TbRI

complexes by in vivo treatment with biotinylated TGF-b1

and FITC-conjugated avidin followed by immunofluorescence

confocal microscopy. After stimulation of cells with biotiny-

lated TGF-b1, cell surface TbRII/TbRI active signalling com-

plexes localized to puncta unevenly distributed over the

plasma membrane. A subset of these active TGF-b receptor

complexes concentrated at cell contacts where they localized

with VE-cadherin (Figure 6C).

Thus, biochemical and morphological data indicating li-

gand-dependent association and colocalization of endo-

genous TbRs with VE-cadherin suggest that VE-cadherin

recruits TbRs at cell-to-cell contacts during signalling.

To test whether proper clustering of VE-cadherin at inter-

endothelial junctions was required for its effect on TGF-b
signalling, we treated confluent monolayers of VEC-positive

cells with 5 mM EGTA during TGF-b stimulation to fully

disrupt VE-cadherin clustering at cell-to-cell contacts

(Supplementary Figure 6S). Only low levels of phosphory-

lated Smad2 and Smad3 were detectable in EGTA-treated

VEC-positive cells challenged with TGF-b, in contrast to

control cells treated with TGF-b in the absence of EGTA,

suggesting that a robust activation of Smad signalling in

endothelial monolayers requires correct homophilic interac-

tions of VE-cadherin molecules. We further confirmed this

finding by a monoclonal antibody (BV9) known to block

VE-cadherin-adhesive properties in a highly specific way

(Corada et al, 1999, 2001). We treated HUVEC confluent

monolayers with BV9 to dismantle VE-cadherin from inter-

cellular junctions and induce its redistribution on the cell

membrane (Supplementary Figure 7S). Consistent with the

Ca2þ chelation results, we observed a substantial decrease of

TGF-b-dependent Smad3 phosphorylation in confluent

HUVECs treated with BV9 compared with isotype control-

treated cells (Figure 7). Overall, these data indicate that

VE-cadherin clustering at interendothelial junctions is

required for efficient TGF-b-induced Smad phosphorylation.

Clustered VE-cadherin binds TbRs and promotes their

assembly into an active receptor complex

TbRs exist as multimeric complexes on the cell surface and

their assembly has a strong impact on mediating and regulat-

ing intracellular signals (Shi and Massague, 2003). To test

whether VE-cadherin may induce complex formation be-

tween TbRII and TGF-b type I receptors, we immunoprecipi-

tated endogenous ALK5 or ALK1 from VEC-positive and -null

cells treated with 5 ng/ml TGF-b for 45 min, and probed the

immune complexes for the associated TbRII (Figure 8). As

expected, TbRII was found to form a complex with ALK1 and

ALK5 in the presence of ligand. However, in contrast to ALK5,

we observed a consistently weaker ligand-induced associa-

tion of ALK1 and TbRII receptors. This effect, in the presence

of signalling, as judged by Smad1/5 phosphorylation

(data not shown), is possibly due to a lower ALK1 relative
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expression and/or affinity of the ALK1 antibody. Importantly,

however, analysis of ALK5/TbRII and ALK1/TbRII complexes

revealed that they were increased by VE-cadherin (Figure 8).

Taken together, these data show that clustered VE-cadherin

may enhance cellular responses to TGF-b by facilitating

ligand-dependent assembly of TbRs into an active receptor

complex, thus regulating their ability to induce R-Smad

phosphorylation and signal propagation.

Allantoises from VE-cadherin-null embryos exhibit

reduced TGF-b/Smad signalling

To test the relevance of the in vitro observations in an ex vivo

model of vasculogenesis and angiogenesis, we used the

mouse allantois organ culture model (Drake and Fleming,

2000; Downs et al, 2001). The allantois is an extraembryonic

tissue undergoing extensive neovascularization in the

developing mouse embryo at 8.5 d.p.c. (Argraves et al,

2002). When explanted, 8.5 d.p.c. allantoises display a highly

branched network of capillary-like vessels after 24 h of cul-

ture; this property was much reduced in allantoises derived

from VE-cadherin knockout (VE�/�) embryos (Crosby et al,

2005). To test whether the loss of VE-cadherin might impair

TGF-b signalling, we investigated by immunofluorescence

and confocal microscopy the nuclear localization of

ALK5-dependent Smads in capillary-like vessels from VE�/�

and VEþ /þ allantoises. Consistent with the abundant
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expression of TGF-b and TbRs in developing allantois (Jonker

and Arthur, 2002), pSmad nuclear localization in ECs was

much increased upon stimulation of starved allantoises with

TGF-b (Supplementary Figure 8S). However, we were able to

detect a consistent and significant decrease of pSmad2/3

(27%) nuclear localization in TGF-b-treated VE�/� vs VEþ /þ

vessels (Figure 9), implying a role for VE-cadherin as positive

regulator of TGF-b signalling levels also in this experimental

setting. Together with the in vitro studies, these data impli-

cate adherens junction signalling as a significant contributor

to TGF-b-induced maturation of blood vessels in vivo.

Discussion

In this study, we describe a novel pathway regulating TGF-b
signalling in the endothelium. We found that the expression

of the EC-specific adherens junction protein VE-cadherin

enhances TGF-b-induced biological responses in ECs.

Several lines of evidence support this conclusion. First, EC

lines from VE-cadherin-null mice or primary ECs treated with

VE-cadherin siRNA show attenuated TGF-b-induced tran-

scriptional, antiproliferative and antimigratory responses

even when expressing normal TGF-b receptors and Smad

complement. Second, VE-cadherin is required for efficient

ALK-dependent Smad phosphorylation as shown by faster

and more potent activation of Smad1/5 and Smad2/3 signal-

ling and more sustained propagation of Smad2/3 signals over

time in VE-cadherin-expressing ECs. Third, specific inhibition

of VE-cadherin clustering in endothelial monolayers results in

decreased TGF-b/Smad signalling. When junctions are dis-

mantled by Ca2þ depletion or by VE-cadherin blocking

antibodies, the TGF-b/Smad phosphorylation is largely atte-

nuated clearly demonstrating that TGF-b signalling in ECs is

critically dependent on proper VE-cadherin engagement at

adherens junctions.

We found that cell surface TbRII codistributes with VE-

cadherin at intercellular contacts and that TGF-b increases

TbRII accumulation at adherens junctions (Figure 6). Based

upon previous studies showing that T�RII can be recruited

into tight junctions through binding to the structural compo-

nent Par6 (Ozdamar et al, 2005), and the observed physical

interaction of VE-cadherin with TbRII independently of the

TGF-b type I receptors and vice versa (Figure 5), we suggest

that at junctional contacts VE-cadherin favours the reciprocal

association of TbRII and TGF-b type I receptors in the

presence of ligand. Indeed, the association of TbRII with

ALK1 and ALK5 is increased by VE-cadherin explaining the

increment of Smad1/5 and Smad2/3 phosphorylation and

signalling.

Previous studies have shown that TGF-b/ALK5/Smad2/3

pathway leads to inhibition of cell migration and prolifera-

tion, whereas signalling through TGF-b/ALK1/Smad1/5/8

can promote cell growth and motility (Goumans et al, 2002,

2003). In our experimental setting, the net downstream effect

of VE-cadherin-mediated increment in TGF-b signalling is

inhibition of cell growth and motility. This was unexpected
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as not only ALK5 but also ALK1 receptor was activated.

However, we observed that Smad2/3 activation was more

persistent than that of Smad1/5 in the presence of VE-

cadherin, indicating that at later times of TGF-b stimulation

junctional VE-cadherin might tip the balance between these

two pathways in favour of ALK5 signalling. As VE-cadherin

associates with ALK1, which is also a signalling receptor for

bone morphogenetic protein (BMP)-9 and -10, two cytokines

with strong antiangiogenic activities in ECs (David et al,

2007; Scharpfenecker et al, 2007), VE-cadherin may have

similar functions in BMP pathways although further studies

are required to clarify this aspect.

The clinical manifestations and symptoms of HHT vary

greatly even within a family, suggesting a potential role for

modifier genes in the progression of this pathology. At this

stage, a connection between the observations reported here

and HHT is only speculative. However, it is conceivable that

conditions which impair VE-cadherin expression or cluster-

ing at junctions may attenuate TGF-b signalling. VE-cadherin

activity is strongly downregulated by inflammatory cytokines

or agents that increase permeability such as histamine,

thrombin or VEGF (Dejana, 2004). It is therefore tempting

to speculate that when players of TGF-b signalling, such

as endoglin and ALK1, are reduced, as in HHT, a further

impairment of TGF-b signalling by a local reduction of

VE-cadherin may cause vascular fragility and haemorrhages.

It is interesting that VE-cadherin-2, a member of the

protocadherin family (Telo et al, 1998), was reported to be

downregulated in HHT1 and HHT2 blood outgrowth ECs

(Fernandez-Lopez et al, 2007).

The role of VE-cadherin expression and clustering in the

modulation of growth factor receptor signalling was pre-

viously described for VEGFR-2 (Lampugnani et al, 2003). In

this case however, and in contrast to TGF-b receptors,

the association of VE-cadherin with the receptor caused a

decrease in its tyrosine phosphorylation and proliferative

signals. Inhibition of VEGFR-2 signalling by VE-cadherin

is mediated by the phosphatase DEP-1/CD148 which is

co-clustered at junctions, dephosphorylates the receptor and

limits its internalization and signalling (Lampugnani et al,

2006). In contrast to VEGFR-2, it is likely that the action of

VE-cadherin on TGF-b pathway relies on the capacity of the

junctional protein to associate with all the components of the

TGF-b receptor complex enhancing, in this way, the interac-

tion between TbRII and TGF-b type I receptors and increasing

the downstream signalling. A general concept that may
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accommodate these observations is that VE-cadherin acts by

inducing vascular stabilization. Through the clustering of this

protein, ECs are able to sense the presence of other adjoining

identical cells and react by limiting their growth and migra-

tion. This action may be exerted by VE-cadherin recruiting

growth factor receptors and modulating their activity. These

opposing functions of VE-cadherin, inhibitory on VEGFR-2

and stimulatory on TbRII/ALK signalling, support a model

(Figure 10) whereby EC response to growth factors is context

dependent and ECs activated by the same growth factor may

respond in opposite ways whether they are confluent and

VE-cadherin organized at junctions or not. This model

has important biological implications as it describes the

quiescent phenotype of ECs as an active state mediated

by continuous inhibition of growth and enhancement of

stabilization signals.

Materials and methods

Transient transfections and transcriptional reporter assays
Transient transfections and reporter assays were performed as
previously described (Felici et al, 2003). In all the reporter assays, a
b-galactosidase expression vector was used as an internal control to
correct for transfection efficiency.

Quantitative real-time RT–PCR
Total RNA from VEC cells was isolated with the RNeasy mini kit
(Quiagen Inc.). cDNA was synthesized, amplified and analysed
on an ABI PRISMs7900 as previously described (Spagnuolo
et al, 2004).

EC proliferation assay
VEC cells were seeded in starvation medium (DMEM, 2% FCS) at a
density of 5�104 cells per well in 24-well plates. After 12 h, TGF-b1
was added at 5 ng/ml. At the indicated time of culture, cells were
trypsinized and the number of viable cells, in triplicate wells, was
determined by Trypan blue and haemocytometer counting.

VE-cadherin gene silencing by siRNA
For VE-cadherin silencing, ON-TARGETplus SMARTpool duplex
siRNAs were used as described in Supplementary data.

Wound-healing migration assay
EC monolayers were wounded with a yellow tip to make a B100 mm
scratch. The wound-induced cell migration in the presence of
TGF-b1 (5 ng/ml) was followed by time-lapse microscopy
(HUVECs) or crystal violet staining (0.5% crystal violet in 20%
methanol) and phase contrast microscopy (VEC cells). The
migration of the cell front was analysed by ImageJ software.

Immunoprecipitation and western blot analysis
Immunoprecipitation of total TbRs and cell surface biotinylated
TGF-b receptors were performed as described previously (Felici
et al, 2003; Pece-Barbara et al, 2005) and in Supplementary data.

Immunofluorescence microscopy
Immunofluorescence analysis of VE-cadherin and ectopically
expressed or endogenous TGF-b receptors was performed as
described previously (Felici et al, 2003; Lampugnani et al, 2006)
and in Supplementary data.

VE-cadherin declustering
For disruption of VE-cadherin clustering, EC monolayers were
treated as described previously (Corada et al, 1999, 2001) and in
Supplementary data.

Allantois culture
Allantoises were dissected from 8.5 d.p.c. mouse embryos and
cultured as described previously (Argraves et al, 2002) and in
Supplementary data.

Statistical analysis
A Student’s two-tailed non-paired t-test was used to determine
the statistical significance. Po0.05 was considered statistically
significant.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).

Acknowledgements

We dedicate this study to the memory of Dr Anita Roberts who
passed away in the summer of 2006. We thank C Hill for plasmids,
G Balconi for MEECs and A Zanetti for HUVECs. We are grateful to
Midory Thorikay and Maarten van Dinther for excellent technical
assistance and to A Cattelino and C Francavilla for valuable discus-
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